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Recently, considerable progress has been made in understanding finite-size scaling in equilibrium systems.
Here, we study finite-size scaling in nonequilibrium systems at the instance of directed percolation �DP�, which
has become the paradigm of nonequilibrium phase transitions into absorbing states, above, at, and below the
upper critical dimension. We investigate the finite-size scaling behavior of DP analytically and numerically by
considering its steady state generated by a homogeneous constant external source on a d-dimensional hyper-
cube of finite edge length L with periodic boundary conditions near the bulk critical point. In particular, we
study the order parameter and its higher moments using renormalized field theory. We derive finite-size scaling
forms of the moments in a one-loop calculation. Moreover, we introduce and calculate a ratio of the order
parameter moments that plays a similar role in the analysis of finite size scaling in absorbing nonequilibrium
processes as the famous Binder cumulant in equilibrium systems and that, in particular, provides a signature of
the DP universality class. To complement our analytical work, we perform Monte Carlo simulations which
confirm our analytical results.
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I. INTRODUCTION

Critical phenomena such as second order phase transitions
are characterized by singularities of various quantities at the
transition point �e.g., the specific heat, susceptibility, corre-
lation length�. These singularities are described by power
laws governed by critical exponents. Studying the phase
transition of a given system, one usually tries to identify the
set of critical exponents which in conjunction with certain
universal scaling functions characterizes the present univer-
sality class. Powerful analytical and numerical techniques
have been developed to accomplish this task. Analytical in-
vestigations of universal quantities allow one to address in-
finite system sizes but they are usually feasible only if one
uses involved approximations such as the diagrammatic per-
turbation expansions of renormalized field theory. Using nu-
merical techniques such as Monte Carlo simulations or trans-
fer matrices calculations one can avoid such approximations,
however, the data is limited to finite systems sizes. There-
fore, finite-size scaling �FSS� is widely used to extrapolate to
the behavior of infinite systems. In particular, FSS is an ef-
ficient method to determine critical exponents and certain
universal scaling functions, and therefore, it often allows to
identify the universality class �see Refs. �1,2� for reviews�.
According to the phenomenological FSS theory �3�, finite
system sizes L result in a rounding and shifting of the critical

singularities. It is assumed that finite-size effects in isotropic
systems are controlled sufficiently close to the critical point
by the ratio L /��, where �� is the spatial correlation length of
the infinite system. Approaching the transition point, this cor-
relation length diverges as ���r−�, where r� ��−�c� mea-
sures the deviation of a temperaturelike control parameter �
from its critical point value �c, and where � is the critical
exponent of ��. Finite-size effects decrease with increasing L
and are negligible for L���, i.e., for L1/�r�1, in systems
with periodic boundary conditions, true short range interac-
tions, and without Goldstone modes. Otherwise, they are rel-
evant, i.e., rounding and shifting effects occur when L���.
It is well known that in equilibrium the hypothesis of the
fundamental role of the ratio L /�� is valid only below the
so-called upper critical dimension dc �see Ref. �4� for a re-
cent review�. Above dc, mean field theories provide exact
results for the critical exponents and the scaling functions.
However, usual FSS fails above dc because certain param-
eters, which are irrelevant in the sense of the renormalization
group, become dangerously irrelevant for d�dc �5�. Danger-
ous irrelevant parameters affect the scaling behavior qualita-
tively and furthermore cause the breakdown of hyperscaling
laws which connect the critical exponents to the spatial di-
mensions d. Investigations of this breakdown of usual finite
scaling date back to the work of Brezin and Zinn-Justin
�6–8�. For the case of periodic boundary conditions, Brezin
and Zinn-Justin introduced an analytic technique which
makes it possible to perform calculations of size-dependent
universal scaling functions. This method exploits the fact
that the so-called lowest or zero mode is distinguished in the
sense that in perturbation theory it becomes critical before
the higher modes do and that, therefore, the latter modes can
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be traced out perturbatively and fully neglected above dc.
It must be emphasized that a meaningful, quasiuniversal

analytical study of finite-size effects is possible only in a
regime, where 1/L	1 and r	1, where it is understood that
L and r are measured in terms of suitable nonuniversal am-
plitudes. Outside this regime, in particular, if L becomes
smaller, finite-size effects will be blurred by the effects of
variables that are irrelevant with respect to the corresponding
bulk universality class. For L=O�1�, analytic approaches are
ultimately hopeless. Above dc, the strongest irrelevant effects
stem from the usual coupling constant �in the following de-
noted g� of the nonharmonic term in the field theoretic func-
tional, which is relevant below dc, but which is dangerously
irrelevant above dc.

After controversial discussions of the zero-mode theory
and the influence of the higher modes �see, e.g., Refs.
�4,9,10�, and references therein� the problem was recently
resolved by Chen and Dohm �10�, and convincing agreement
between numerical data and field theoretical results was
achieved �11�. Chen and Dohm showed that even above the
upper critical dimension dc the higher modes play an essen-
tial role. The following three points summarize key findings.
�i� The higher modes induce a shift of the critical value of the
control parameter proportional to g2L2−d, where g is the dan-
gerously irrelevant coupling constant, cf. region I in Fig. 1.
This shift is crucial for the correct interpretation of simula-
tions. �ii� The influence of the higher modes is essential for
the correct description of the exponential decrease of the
finite size effects approaching the infinite volume limit, cf.
region III in Fig. 1. Points �i� and �ii� suggest that the cor-
rections induced by the higher modes can be neglected only
in the region

Ld/2−2 � Ld/2r� g2L2−d/2, �1.1�

cf. region II in Fig. 1 �12�. �iii� Chen and Dohm shed light on
the fact that analytical methods using a hard momentum cut-
off, which is well known to be equivalent to long range
interactions, induce a wrong algebraic decrease of finite size
effects. Hence, the widely used Fisher-Wilson momentum
shell, as with any other hard-cutoff renormalization proce-
dure, is incompatible with the exponentially decreasing
crossover to the infinite volume limit.

Compared to the equilibrium situation, much less is
known in the case of nonequilibrium phase transitions. This

motivates us to discuss in the paper at hand FSS in nonequ-
librium phase transitions at the instance of directed percola-
tion �DP�. Due to its robustness and ubiquity �including criti-
cal phenomena in physics, biology, dynamics of populations,
epidemiology, as well as autocatalytic chemical reactions�
DP is recognized as the paradigm of nonequilibrium phase
transitions into absorbing states �see Refs. �13–15� for a re-
cent review on absorbing state transitions, and Ref. �16� for a
recent review on renormalized field theory applied to perco-
lation processes� and, although an exact analytical solution is
still lacking, DP plays a role for nonequilibrium phase tran-
sitions comparable to that of the Ising model for equilibria.
Previous studies of finite-size scaling of percolation pro-
cesses by one of us and co-workers �17� focused on the ab-
sorbing phase below dc. Here our scope is different: we are
interested in finite-size properties of the steady state below,
at and above dc=4. To be specific, we study for these dimen-
sions the scaling behavior of finite DP systems in the active
phase which is maintained by a homogeneous external
source. Using Reggeon field theory �RFT� �19�, the generic
field theoretic description of the DP universality class
�20–24�, we derive finite-size scaling exponents and univer-
sal scaling functions for periodic boundary conditions. For
d�4, we demonstrate that the usual phenomenological FSS
theory for DP has to be modified, analogous to what we have
discussed above for the equilibrium case, in order to describe
the scaling behavior within the mean field regime. We show
that the correct scaling variable in the strong finite size re-
gion L	���r−1/2 is proportional to Ld/2r, and that correc-
tions, which are controlled by an expansion in a variable v
�gL2−d/2, become essential only if this variable goes to zero.

Compared to the equilibrium case, an additional concep-
tual problem arises in dynamics: to obtain analytical results
for the finite-size scaling functions, one is forced to perform
a Markovian approximation of the dynamics of the lowest
mode. Therefore, our analytical results are restricted to the
strong finite-size region. Outside this region the Markovian
approximation leads to a description of the crossover to the
infinite-volume limit by algebraically decreasing correction
terms instead of the correct exponentially decreasing ones,
even if we include the one-loop corrections arising from the
higher modes. We explicitly demonstrate this failure of the
Markovian approximation via a perturbation calculation of
the correlation function.

In the strong finite-size region, we observe, when in the
region near the critical point the shift induced by the higher
modes is taken into account, convincing quantitative agree-
ment between the lowest mode finite-size analysis and our
numerical results. For d
4 and d=4 we calculate � expan-
sions and logarithmic corrections, respectively, for various
quantities, focussing, in particular, on an universal ratio of
order parameter moments. For d
4, in addition, we perform
simulations which clearly underscore that this ratio is a uni-
versal signature of the DP class. A brief account of parts of
the work presented here has been given previously in Ref.
�18�.

The outline of our paper is as follows. In Sec. II we
briefly review RFT as the field theoretic model of choice for
the DP universality class. We derive the effective response
functional, i.e., the dynamic free energy of the homogeneous

L−d/2

r

I

III

II

FIG. 1. Scaling regions �schematically� above dc where correc-
tions to the lowest mode approximation resulting from higher
modes are essential �I and III� or negligible �II�.
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�lowest� mode. In Sec. III we calculate this dynamic free
energy in a one-loop Markovian approximation. In Sec. IV
we derive finite-size scaling forms for spatial dimensions
above the upper critical dimension. The steady state solution
of the Fokker-Planck equation which correspondents to the
effective response functional yields all moments of the ho-
mogeneous mode in scaling form. In Sec. V, we compare our
analytical results with numerical results stemming from our
Monte Carlo simulations. In Sec. VI we study the crossover
to mean field theory in the infinite volume limit. In Sec. VII
we consider finite size effects in the steady state for spatial
dimensions below the upper critical dimension. We apply the
renormalization procedure to our one-loop results, and we
derive universal values of the aforementioned ratio of order-
parameter moments in an � expansion. The analytic esti-
mates which follow from this expansion are compared with
the numerical results. In Sec. VIII, we study finite size ef-
fects right at the upper critical dimension. We calculate loga-
rithmic corrections to various quantities including our mo-
menta ratio. Concluding remarks are given in Sec. IX. An
appendix contains a brief presentation of the properties of
some functions fundamental to finite-size scaling in DP. For
the convenience of the reader, we will provide at the begin-
ning of the main sections short summaries of their respective
contents and we point out to their most important formulas.

II. REGGEON FIELD THEORY AND THE EFFECTIVE
RESPONSE FUNCTIONAL

We start our analysis by deriving an effective response
functional for the zero mode. One of the main findings of
this section is that the distance r from the bulk critical point
in this effective theory is given by Eq. �2.7�. Equation �2.11�
summarizes our result for the effective response functional.

It has been known for a long time that the DP universality
class is well represented by RFT. For a recent overview on
the field theories of percolation processes and the derivation
of the underlying minimal models from basic principles see
Ref. �16�. RFT, based originally upon a non-Hermitean
Hamilton operator �19�, is equivalent to a Langevin descrip-
tion of a minimal DP process, the so-called Gribov process
�20�. After reduction to the relevant terms, the stochastic
equation of motion of this DP process may be written in the
form of the Langevin equation �in the Itô interpretation�
�23,24�

�−1�ts�r,t� = − ��2 + � +
g

2
s�r,t��s�r,t� + h + �r,t� . �2.1�

Here, the activity field s�r , t��0, which is proportional to
the density of active particles �agents� on a mesoscopic
�coarse grained� scale, is the order parameter field of the
nonequilibrium phase transition. The diffusional term repre-
sents the isotropic spreading of activity. The control param-
eter of the transition is �, and �c denotes its critical value. In
the infinite volume limit, a finite positive particle density
occurs below the transition point ��
�c� whereas the absorb-
ing vacuum state �s=0� is approached above the transition
point if the source term h�0 �which can be implemented in

simulations, e.g., as a spontaneous particle creation process
�25�� is absent. In a finite system, the absorbing state is in-
evitably approached even for �
�c, if h=0. However, it can
be shown �27� that the logarithm of the relaxation time to the
absorbing state increases proportional to the system volume
in the active phase below �c. � and g denote the kinetic and
coupling constants, respectively. , finally, represents the
noise which accounts for fluctuations of the particle density.
All universal properties of the DP universality class are cap-
tured by the minimal model, Eq. �2.1�, provided the noise
�r , t� is a Gaussian random variable with zero mean and
correlator given by �26�

�r,t��r�,t�� = �−1g�s�r,t���r − r����t − t�� . �2.2�

Note, that only an absorbing noise with a correlator that
comprises at least a term linear in the field s ensures that the
systems is trapped in the absorbing state with a continuously
decreasing survival probability �27�. A form of the noise pro-
portional to s2 �multiplicative noise� results in a survival
probability which is strictly 1 for all finite times.

Renormalization group techniques have been applied
quite successfully to determine the critical exponents and
universal scaling functions of DP �16,21–24,27–29�. In the
framework of field theory, a path integral formulation of sto-
chastic processes is more useful than their Langevin equa-
tions. In the path integral formulation, correlation functions
and response functions can be determined by calculating
path integrals with weight exp�−J� �30,31�, where the dy-
namic response functional J describes the considered sto-
chastic process. The dynamic response functional of the Gri-
bov process �2.1� is given by �23,24�

J�s̃,s� =� ddrdt�	s̃��−1�t + �� − �2� +
g

2
�s − s̃��s − hs̃
 ,

�2.3�

where s̃�r , t� denotes the purely imaginary response field
conjugated to the Langevin noise field. The functional J is
invariant under time reversal �in RFT usually called rapidity
reversal�

s̃�r,t� ↔ − s�r,− t� �2.4�

as long as the �symmetry breaking� field h vanishes. This
symmetry is spontaneously broken in the active phase below
the transition point. In general, the time reversal invariance
of the minimal model is merely an asymptotic symmetry of
systems belonging to the DP universality class. Note, how-
ever, that this symmetry is exact for bond DP.

It is worth noting, that the original RFT �19� is based on a
bosonic annihilation-creation formalism in which s is related
to the annihilation operator, and s̃ to the creation operator
�for a recent review over this master-equation approach see
Ref. �32��. Hence, as described in Ref. �16�, the original RFT
and the fluctuating field theory based on the Gribov process
�2.1�, where s is proportional to a real positive density, are
formally different. Note that the bosonic theory leads to an
additional noise term proportional to �s̃s�2 in the functional
J, Eq. �2.3�, with positive sign. Such noise terms result from
anticorrelating more-particle annihilation reactions, and are
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typical for diffusion-limited reactions. However, for DP,
which is not a diffusion-limited reaction system, this noise
term is irrelevant. Hence, both formalisms, the Langevin-
and the master-equation approach, produce the same pertur-
bation series which leads via the renormalization group to
the same universal asymptotic behavior. Note, however, that
in the bosonic formalism s and s̃ are constructed as complex
fields with s̃s real and positive. Thus, after deleting the irrel-
evant noise term, the functional integration with the weight
exp�−J� is a priori mathematically ill defined. Ciafaloni and
Onofri �33� have shown more than 25 years ago that in this
case the only correct support for integration over s and s̃ is,
respectively, the real positive axis and the full imaginary axis
�see also the appendix of Ref. �24� for a corresponding qua-
sicanonical transformation of the fields�. The upshot is that
only the Langevin equation formalism offers a mathemati-
cally correct interpretation of the functional integral. Be-
cause we must use at least parts of the weight exp�−J� as it
stands, without applying perturbation theory, as a probability
measure, this interpretation is of greatest importance.

Using standard techniques known from equilibrium �6–8�,
one can extract from J an effective response functional for
the zero mode, which then can be used to calculate size-
dependent universal scaling functions as well as the involved
critical exponents. To follow this route, let us consider DP in
a finite cubic geometry of linear size L with periodic bound-
ary conditions and expand s and s̃ in plane waves

s�r,t� = �
q

eiq·rs�q,t� , �2.5�

and likewise for s̃. Each component of the wave vector q
takes on discrete values, viz. multiples of 2� /L including
zero. When dealing with summations over q, one has to bear
in mind that path integrals based on the response functional
�2.3� are well defined only if an appropriate regularization of
the diverging UV behavior is applied. In principle, there are
different options for choosing a regularization procedure. As
discussed in the Introduction and as can be easily checked by
applying the Euler-McLaurin summation formula, a hard
momentum cutoff �support of the modes only for momenta
with �q���� is inappropriate for studying FSS, since a hard
cutoff induces nonphysical long-range correlations in real
space �8� which contaminate the finite size calculations �10�.
Lattice regularization, where the system is placed on a dis-
crete lattice instead of spatial continuum, is the most physi-
cal one. Moreover, this regularization is in closest contact to
simulations. However, lattice regularization replaces the La-
placian by the lattice difference operator. Thus, analytical
calculations become very complicated. In the following, we
will use �implicitly� a soft cutoff procedure, i.e., we will
include a factor exp�−q2�2� in all summations over wave
vectors q, followed by dimensional regularization and the
limit �→�. One can show that this procedure is equivalent
in the scaling region to lattice regularization as long as one
concentrates on universal quantities. At this point, a word of
caution is in order. If very small lattices are considered, it
may be more appropriate to use lattice regularization �10�. In
the following, we will ignore very small lattices in our ana-

lytic considerations because for these lattices one has to ex-
pect many nonuniversal corrections.

The Fourier transformed propagator of the perturbation
theory about the saddle point of the path integrals �mean-
field theory� based on the response functional �2.3� is given
by

G0�q,�� =
1

i�/� + r + q2 , �2.6�

with

r = �� − �c� + M �2.7�

measuring the distance to the critical point. Here M =g�s,
with the expectation value �s determined by the condition
that tadpoles are excluded in the diagrammatical perturbation
expansion. In mean-field theory, r=��2+2gh and �c=0.
Hence, for small frequencies � in the finite-size limit w
=r�L /2��2	1, the zero mode with q=0 separates from the
higher modes and leads to infrared divergencies in perturba-
tion theory. Therefore, functional integrals of the zero mode
must be calculated exactly, and cannot be handled by pertur-
bation theory �6–8�. Perturbation theory can be used, how-
ever, as a tool for the functional integration of the higher
modes. As we will discuss in detail later on, the Gaussian
fluctuations of the higher modes have a significant influence
on the scaling functions describing the crossover from w
�1 to w�1, as well as the behavior near the bulk critical
point w�0. Nonetheless, mean-field theory should be cor-
rect for d�4 in the bulk limit w→�.

Following Ref. �17�, we construct an effective response
functional for the zero-mode by separating the homogenous
mode ��t� from its orthogonal complements ��r , t� via set-
ting

gs�r,t� =��t� +��r,t� �2.8�

with ��t�=gL−d�ddrs�r , t� and likewise for s̃. This leads to a
decomposition of the action J=J0+J1+J2, with

J0 = �g−2Ld� dt	�̃��−1�t + � +
1

2
�� − �̃��� − H�̃
 ,

�2.9�

where H=gh and

J1 = �g−2� ddrdt	�̃��−1�t + �� − �2� + �� − �̃���

+
1

2
��̃�2 −��̃2�
 , �2.10a�

J2 = �
g−2

2
� ddrdt�̃�� − �̃�� . �2.10b�

We have included the coupling constant g in the definition of

the fields �, �̃, �, �̃ to disentangle the two different roles
of g, which on the one hand serves as the loop-order gener-
ating parameter of the perturbation theory around the mean-
field �Landau� approximation, and on the other hand is a
scale factor of the fields. This last role is what makes g a
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“dangerous” irrelevant variable, as alluded to in the introduc-

tion. Finally, we eliminate �̃ and � via functional integra-
tion. This leads to

���̃,�� = J0 − ln � D��̃,��exp�− J1 − J2� �2.11�

as our effective response functional for the homogeneous
mode. In the following, we will also refer to � as our dy-
namic free energy.

The zero-loop approximation ��J0 is known as the low-
est mode approximation of finite-size scaling �7,8�. As we
move along, we will show that, for d�4, this lowest mode
theory is modified outside the lowest-mode region Ld/2−2

�rLd/2�L2−d/2, see Fig. 1, by one-loop �Gaussian� contribu-
tions arising from the higher modes.

III. DYNAMIC FREE ENERGY IN THE ONE-LOOP
EXPANSION

In this section, we calculate the dynamic free energy � to
one-loop order in perturbation theory. Key formulas of this
section are Eqs. �3.11� and �3.15� which give the finite-size
scaled version of, respectively, the distance r from the bulk
critical point and the dangerously irrelevant coupling con-
stant g. Central to our discussions to follow is the one-loop
dynamical free energy �3.5� in conjunction with our one-loop
results for the parameters appearing in it, Eq. �3.14�.

To one-loop order, J2 does not contribute and hence can
be neglected. J1 contributes via the propagator

G�t,t�;q� = ��t − t��exp	− ��� + q2��t − t��

+ ��
t�

t

dt���̃�t�� −��t���
 �3.1�

of the higher modes, which is determined by the bilinear part

in the fields �̃, � of J1. Gaussian integration yields readily

− ln � D��̃,��exp�− J1� =
�2

2 �
q�0

� � dtdt��̃�t�

� G�t,t�;q�2��t�� + O���̃��2� .

�3.2�

For the time being, let us concentrate on the region w	1.
Then, the typical time dependence of the zero mode shows
slowing down in comparison to the higher modes leading to
Markovian behavior of the zero mode. Thus, we can approxi-

mate ��t�� in Eq. �3.2� by ��t�− �t− t���̇�t� and the propa-
gator simplifies to

G�t,t�;q� = ��t − t��exp�− ��� + q2 +��t� − �̃�t���t − t��� .

�3.3�

Note that this Markovian approximation does not any longer
allow a correct description of the crossover from the finite
size to the infinite volume behavior. If one incorrectly takes

w�1 in the results following from this approximation one
gets algebraically decreasing correction terms describing the
crossover to the infinite volume limit. This crossover is
qualitatively wrong because the corrections must be expo-
nentially decreasing. We will discuss this shortcoming of the
Markovian approximation in Sec. VI, where we calculate the
steady state correlation function for w�1 in a one-loop cal-
culation.

After application of the Markovian approximation the re-
sidual time integration of t� can be done. We obtain

− ln � D��̃,��exp�− J1�

=� dt �
q�0
	 ��̃�

4�� +� − �̃ + q2�
−

�̃�̇

8�� +� − �̃ + q2�2

�3.4�

retaining only terms of the form already appearing in J0, i.e.,

neglecting fourth-order terms in � and �̃. These higher or-
der monomials lead to corrections of higher order in L−1 as
the retained ones �7,8�. Subsequently, we expand the de-

nominators in Eq. �3.4� in � and �̃ about their mean values

��=M and ��̃=0. Note that this procedure provides
strictly positive denominators even in the case �c−�
� �2� /L�2 and also that we can include the bulk critical
value �c of the control parameter � in the denominators of
Eq. �3.4� since �c is of order g2. Recalling definition �2.7�,
we finally obtain from Eqs. �2.9�, �2.11�, and �3.4� that

���̃,�� = �g−2Ld� dt	�̃��−1k̂�t + �̂

+
f̂

2
�� − �̃��� − H�̃
 . �3.5�

The parameters k̂, �̂ and f̂ are given by

k̂�r� = �1 −
g2

8
S2�r�� , �3.6a�

�̂�r� = �1 −
g2

4
S2�r��� +

g2

4
�S1�r� + rS2�r�� , �3.6b�

f̂�r� = �1 −
g2

2
S2�r�� , �3.6c�

with Sl defined by

Sl�r� = L−d �
q�0

1

�r + q2�l . �3.7�

As mentioned earlier, all sums over wave vectors must be
regularized appropriately; it is understood that in actual cal-
culations these sums are augmented by a soft cutoff factor
exp�−q2�2�. In the infinite-size limit L→�, the sums Sl�r�
tend to the integrals
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Sl
��r� = �

q

1

�r + q2�l �3.8�

with �q¯ = �2��−d�ddq¯. The bulk critical point is then
given in one-loop approximation by

�c = −
g2

4
S1
��0� = −

g2

4
�

q

1

q2 . �3.9�

For the steps to follow, it is useful to introduce the differ-
ences

�l�r� = Sl
��r� − Sl�r� ¬

L2l−d

�2��2l��l�
D�l��w� �3.10�

with the scaling variable

w = � L

2�
�2

r . �3.11�

The D�l� are functions of this scaling variable given by

D�l��w� = �
0

�

dttl−1e−wt���
t
�d/2

− A�t�d + 1� = − �wD�l−1��w� ,

�3.12�

where A�t�=1+2�n=1
� exp�−n2t�= �� / t�1/2A��2 / t�. Some im-

portant properties of the functions D�l��w� are discussed in
the Appendix. With help of the differences �3.10�, we can
express the parameters appearing in the dynamic free energy
after some rearrangements as

k̂�r� = �1 −
g2

8
�

q

1

�r + q2�2� +
g2

8
�2�r� , �3.13a�

�̂�r� = �1 −
g2

4
�

q

1

�r + q2�2��� − �c� −
g2

4
�

q

r2

q2�r + q2�2

+
g2

4
��2�r��� − �c� − �1�r� − r�2�r�� , �3.13b�

f̂�r� = �1 −
g2

2
�

q

1

�r + q2�2� +
g2

2
�2�r� , �3.13c�

where we have neglected terms of order g4. The integrals
over wave vectors in Eqs. �3.13� lead to IR singularities for
spatial dimensions d�4 if r→0. These singularities must be
treated by the renormalization group �17�. We will return to
the cases d
4 and d=4 in Secs. VII and VIII, respectively.

For d�4, the integrals lead to cut-off dependent nonuni-
versal constants up to corrections of order r�d−4�/2. We neglect
these corrections, and include the nonuniversal constants in a

rescaling of the fields � ,�̃, and of the parameters � ,g ,H.
We redefine �−�c→� and thus, henceforth, �=0 at the bulk
critical point. Finally, we obtain for d�4

k̂ = �1 +
v2

2
D�2��w�� , �3.14a�

�̂ = �1 + v2D�2��w��� − v2�D�1��w� + wD�2��w���2�

L
�2

,

�3.14b�

f̂ = �1 + 2v2D�2��w�� , �3.14c�

where we have defined a second scaling variable

v =
g

8�2L2−d/2. �3.15�

Now, after having identified w and v as fundamental scal-
ing variables, it is worthwhile to briefly reconsider the con-
dition for the approximations that we made in this section. To
justify the neglect of higher loop orders of the perturbation
expansion as well as the influence of other irrelevant cou-
plings in the response functional �2.3� we have to assume
v2	1, that means that L is sufficient large but finite. More-
over, for the application of the Markovian approximation, we
have to assume w	0.

IV. FOKKER-PLANCK EQUATION AND SCALING
OF THE STEADY STATE OBSERVABLES ABOVE dc

In this section we analytically derive scaling forms and
scaling functions for steady state observables above the up-
per critical dimension. First, we identify further fundamental
scaling variables, namely, the finite-size scaled control pa-
rameters given in Eq. �4.1�. Moreover, we introduce finite-
size scaled fields, Eq. �4.3a�, and a finite size-scaled time,
Eq. �4.3b�. This leads to a finite-size scaled dynamic free
energy, Eq. �4.5�, with parameters a and b given in Eq. �4.7�,
which will play a central role as we move along. Then, we
discuss how we can calculate the moments of the homoge-
neous density, i.e., averages of powers of �, with the help of
a Fokker-Planck equation �4.11�, and its stationary solution
�4.12�. Our results for the moments of the homogeneous den-
sity are presented in Eq. �4.18�.

As we move along, we shall see that, in addition to w and
v, three further combinations of the four physical parameters
�, h, M, L and the dangerous irrelevant coupling constant g
emerge as natural variables of the finite-size scaling forms of
the moments of the homogeneous density, namely,

x =
2

g
Ld/2�, y =

2

g2LdH, z =
2

g
Ld/2M . �4.1�

The variables w and v are related to x and z by

w = v�x + z� . �4.2�

Moreover, we introduce scaled fields �, �̃, and a scaled time
s,

��t� = ���s�, �̃�t� = ��̃�s� , �4.3a�

�t = �s , �4.3b�

with scale factors �, � given by

� = k̂−1/2gL−d/2, �4.4a�
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� = 2 f̂−1k̂3/2g−1Ld/2. �4.4b�

Incorporating these rescalings into the dynamic free energy
�3.5�, we obtain

���̃,�� =� ds��̃��s + a + �� − �̃��� − b�̃� , �4.5�

with new parameters

a = 2k̂1/2ĝ−1�̂Ld/2, �4.6a�

b = 2k̂ĝ−1hLd, �4.6b�

where ĝ=gf̂ . When expressed in terms the scaling variables,
these new parameters read

a = �1 −
7v2

4
D�2��w� + O�v4��

� �x − vD�1��w� − zv2D�2��w� + O�v3��

= �1 −
3v2

4
D�2��w� + O�v4��x

− v�D�1��w� + wD�2��w� + O�v2�� , �4.7a�

b = �1 −
3v2

2
D�2��w� + O�v4��y . �4.7b�

Here we have indicated two-loop contributions and higher
order ones, resulting from neglected irrelevant couplings in
the response functional �2.3� by the Landau order symbol.
The rescaled form �4.5� makes transparent an essential fea-
ture of the dynamic free energy ���̃ ,��: it depends only on
the two parameters a and b. As a straightforward conse-
quence, all correlation and response functions of the homo-
geneous density �which is proportional to �� are universal
functions of a, b, and the scaled time s:

FN,Ñ��si�,a,b� =��
i=1

N

��si� �
j=N+1

N+Ñ

�̃�sj�� . �4.8�

The strict lowest-mode approximation neglects all the one-
loop corrections of the higher modes, that is it sets v=0.
Hence, we have a�v=0�=x and b�v=0�=y in this approxi-
mation. Recalling the definitions �4.3�, we find that the cor-
relation and response functions

GN,Ñ��ti�,�,h,L,g,�� =��
i=1

N

��ti� �
j=N+1

N+Ñ

�̃�tj���cum�

�4.9�

of the homogeneous density have the finite-size scaling form
in the zero-loop approximation

GN,Ñ��ti�,�,h,L,g,��

= �g2/Ld��N+Ñ�/2FN,Ñ��L−d/2g�ti/2�,2Ld/2�/g,2Ldh/g�

�4.10�

with the universal scaling functions FN,Ñ.

Next, we determine the scaling functions FN,0��0� ,a ,b�
including their one-loop corrections. Path integrals with
weight exp�−���̃ ,��� based on the dynamic free energy
���̃ ,��, Eq. �4.5�, are equivalent to mean values taken with
a probability P�� ,s ��0�d� to find the process in the interval
�� ,�+d�� at time s if the process is started at time 0 with
�0. The probability density P�� ,s ��0� is determined by the
Fokker-Planck equation �17,27�

�sP��,s��0� = �����a + ��� − b�P��,s��0�� + ��
2��P��,s��0�� ,

�4.11�

with initial condition P�� ,0 ��0�=���−�0�. In the classifica-
tion scheme of Feller �34,35�, the infinite point �=� is a
natural boundary, and therefore P�� ,s ��0�=0. The boundary
at �=0 is a so-called exit boundary, representing the absorb-
ing state as a growing � function, if b=0. In the case b�0,
this boundary is regular �entrance� if 0
b
1, and natural
for b�1. In both cases it is easy to find the steady state
distribution

P0��� = C�b−1 exp�− a� −
�2

2
� , �4.12�

where C is determined by the normalization condition
�0
�d�P0���=1. Note that in the limit b→0 the normalization

constant C goes to zero as a consequence of the absorbing
state. In this case the only normalizable stationary probabil-
ity density is limb→0P0���=����.

Now we fix the scaling variable z. Because a and b are the
only parameters that our state distribution depends on, z en-
ters the one-loop correction terms, but it does not appear at
zero-loop order. Hence, we can use here the strict lowest
mode approximation z=2��0, where the mean value is cal-
culated with the steady state distribution �4.12� with a and b
set equal to the zero-loop forms a�v=0�=x and b�v=0�=y.
This leads us to

z = 2�1�x,y� , �4.13�

where �1 is a member of the set of functions defined by
��l=�l�a ,b�, i.e.,

�l�a,b� =

�
0

�

d��b+l−1 exp�− a� − �2/2�

�
0

�

d��b−1 exp�− a� − �2/2�
=
��b + l�D−b−l�a�
��b�D−b�a�

.

�4.14�

Here, D��z� are the well known parabolic cylinder �Weber�
functions �see, e.g., Ref. �36��. Using the relations of these
functions to the confluent hypergeometric �Kummer� func-
tions M�� ,� ;z� with M�� ,� ;0�=1, we have
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�1�a,b� =
�2�„�1 + b�/2…M„�1 + b�/2,1/2;a2/2… − 2a��1 + b/2�M�1 + b/2,3/2;a2/2�

��b/2�M�b/2,1/2;a2/2� − �2a�„�1 + b�/2…M„�1 + b�/2,3/2;a2/2…
�4.15�

and the recursion relation

�l�a,b� = �b + l − 2��l−2�a,b� − a�l−1�a,b� �4.16�

with �0�a ,b�=1. We note two other special relations for later
use:

�l�0,b� = 2l/2�„�l + b�/2…
��b/2�

, �4.17a�

�1�a,b� = b��/2ea2/2 erfc�a/�2� + O�b2� . �4.17b�

Here, erfc�x� denotes the complementary error function.
Now we are finally in the position to write down a scaling

form for the moments of the homogeneous density with
known scaling functions. Collecting, we obtain

��N = �k̂Ld/g2�−N/2�N�a,b� , �4.18�

with universal scaling functions FN,0��0� ,a ,b�=�N�a ,b�
given to one-loop order by Eq. �4.15� or, respectively, imme-
diately following from Eq. �4.15� via the recursion relation
�4.16�.

V. SIMULATION RESULTS ABOVE dc

To complement our analytical calculations for d�dc, we
have performed Monte Carlo simulations at d=5 of two criti-
cal models belonging to the DP universality class �see Ref.
�13�, and references therein�. Naturally, the observables that
we found best suited for our numerical work were not nec-
essarily identical to those that are most convenient for doing
field theory. In the following, we identify observables �ratios�
that are convenient for numerical work, Eq. �5.4�. Then, we
connect these observables with our field theoretic results
which provides us with scaling functions for these observ-
ables, Eq. �5.5�. We introduce a ratio U, Eq. �5.6�, which in a
certain sense takes on the role in critical dynamics that the
famous Binder cumulant plays in equilibrium critical phe-
nomena. Equation �5.7� gives our general analytical result
for U. We derive the scaling form of the ubiquitous param-
eter a at the critical point, Eq. �5.11�. This finally leads us to
Eq. �5.12� for U, which is particularly well suited for com-
parison between theory and simulation.

We have simulated the contact process �CP� on simple
cubic lattices of size L=4,8 ,16 at the critical value of the
respective control parameter �, �=�c=1.13846�11�, as well
as the site-directed percolation process �SDP� implemented
via a generalized Domany-Kinzel automaton �38,39� on bcc
lattices of linear size L=8,16,32 at the critical value of the
occupation probability p, p= pc=0.0359725�2� �40�. In con-
trast to conventional equilibrium simulation techniques,
steady state finite-size quantities are inaccessible for absorb-

ing phase transitions at zero field because, close to the tran-
sition point, the systems will be soon trapped in the absorb-
ing state without chance of escape. To circumvent these
difficulties, we perform simulations in non-zero source at
criticality, as recently advocated in Ref. �37�. In the remain-
der of this section we will present the results of our simula-
tions and compare them to the analytic results derived in Sec.
IV.

Using first the lowest mode approximation without the
one-loop corrections of the higher modes we are interested in
the moments of the order parameter, the homogeneous den-
sity �, about the absorbing state �=0. According to Eq.
�4.10�, we have the scaling equations

�ALL�Nd/2��N = MN„A���ALL�d/2,Ahh�ALL�d
… . �5.1�

Deviating from the conventions used in Sec. IV, we have
here explicitly pulled the nonuniversal amplitudes AL, Ah,
and A� out of the parameters L, h, and �, respectively. In
accord with our analytical result �4.17a�, we choose the nor-
malizations M1�0,1�=�2/� and M4�0,1�=3�M2�0,1��2.
With these normalizations, we get for the universal finite size
scaling functions defined in Eq. �5.1�:

MN�0,y� = 2N/2���y + N�/2�
��y/2�

, �5.2�

where bulk criticality �=0 is assumed. For the order param-
eter, in particular, this leads to the modified FSS scaling form

�� = �ALL�−d/2M1„0,Ahh�ALL�d
… , �5.3a�

with the universal scaling function

M1�0,y� = �2
�„�y + 1�/2…
��y/2�

= 	�y , y → �

��/2y , y → 0.



�5.3b�

For analyzing the numerical data, it is useful to define the
ratios

V =
��2
��2 − 1, S = 1 −

��3
3����2

, Q = 1 −
��4

3��22 .

�5.4�

Note that the ratio Q is identical in form to the well known
Binder cumulant for equilibrium systems. From Eqs. �5.1�
and �5.2�, we immediately obtain

V =
y��y/2�2

2���y + 1�/2�2 − 1 = 	1/2y , y → �

y , y → 0.

 �5.5a�
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S =
2

3
�1 −

1

2y
�, Q =

2

3
�1 −

1

y
� , �5.5b�

with the scaling argument y=Ahh�ALL�d.
Figure 2 compares our analytic results for the normalized

order parameter M1 and the ratio Q to our numerical find-
ings. The solid dot marks the condition Q=0 for y=1, and
the horizontal dashed line corresponds to the limit 2 /3. Fig-
ure 2 demonstrates that the data of the lattice models obey
the modified FSS form Eqs. �5.3b� and �5.5b�, and that the
obtained scaling curves are in perfect agreement with the
results of the continuum theory. We rate this as an impressive
manifestation of the robustness of the DP universality class.
Two further points are worth stressing. �i� The order param-
eter assumes both asymptotic regimes �M1��y for y→�
and M1��� /2y for y→0� predicted by our theory. �ii� As
mentioned above, the simulated systems got stuck quickly in
the absorbing state if the external source was turned off, h
=0. Thus both, the analytical results as well as the numerical
simulations reflect that well-defined steady-states exist close
to the critical point for h�0 only.

The corrections due to the higher modes �v�0� and the
exponential instead of the algebraic crossover to mean field
scaling for y→� are not resolved by the numerical data.
Note, however, that the leading terms of the order parameter
and second moment, see Eqs. �5.3b� and �5.5a� are correct in
this limit. In this mean field region the order parameter fluc-
tuations are dominated by small Gaussian correlations.
Hence, we have ��N / ��N=1+ �N�N−1� /2�V+O�V2�. Us-
ing this expansion one easily demonstrates that S and Q as
given in Eq. �5.5b� show the correct asymptotic scaling in-
cluding the corrections �y−1.

In the absorbing state, the ratios Eq. �5.5� are not finite for
y→0. To analyze the scaling behavior in this limit, we in-
troduce the following combination of moments:

U =
��2��3 − ����22

����4 − ����22 =
2 − 3S

2 − 3Q
, �5.6�

which can be viewed as an analog in critical dynamics of the
famous Binder cumulant. Inserting the lowest-mode scaling
functions �5.5b�, this ratio becomes simply a constant equal
to 1/2. This value is indeed correct in the limit y→�, but for
y→0, we should expect deviations due to the finite-size shift
of the critical control parameter �. Using the scaling form
�4.18� for the order parameter moments, we obtain

U�a,b� =
�2�a,b��3�a,b� − �1�a,b��2�a,b�2

�1�a,b��4�a,b� − �1�a,b��2�a,b�2 , �5.7�

as functions of the parameters a and b, with �l�a ,b� follow-
ing from Eqs. �4.15� and �4.17b� via the recursion relation
�4.16�. U�a ,b� is displayed in Fig. 3 as a function of ln b
with a as a parameter. It is only in the case a=0 that U is
constantly equal to 1/2, whereas U deviates and grows from
this value for b	1 when a gets increasingly negative. Thus,
the limit U0�a�=limb→0U�a ,b� at the bulk critical point is a
convenient measure of the shift of the critical control param-
eter due to finite size.

Now, let us look more closely at the parameter a as given
in Eq. �4.7a�. For x=y=0 we get

a = − �1 −
7v2

4
D�2��0� + O�v4���1 + O�v2��vD�1��0� .

�5.8�

Defining a new nonuniversal length L0 by the relation

vD�1��0� = �L0/L�d/2−2, �5.9�

we obtain

a = − �1 −
7D�2��0�
4D�1��0�2 �L0/L�d−4 + O„�L0/L�2d−8

…�
� �1 + O„�L0/L�d−4

…��L0/L�d/2−2. �5.10�

At first glance, the correction factor −7D�2��0� /4D�1��0�2=
−2.096 in d=5 seems to be a universal contribution. Note,
however, that this correction factor merely represents the
one-loop contribution and that the two-loop contribution
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FIG. 2. The universal order parameter scaling function M1 �in-
set� and the universal fourth order ratio scaling function Q as a
function of the rescaled source.
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FIG. 3. The ratio U as a function of ln b with a as a parameter.
For a=0, U lies on the abscissa, U�1/2. For a decreasing form
zero, the values of U deviate increasingly from 1/2 for b	1.
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O(�L0 /L�d−4) of the second factor in Eq. �5.10� is of the same
order in L0 /L as the one-loop contribution. Therefore, to be
consistent, one either has to take only the lowest order in Eq.
�5.10�, or, if one seeks to proceed to next to leading order,
one has to account for the two-loop contribution to the finite-
size shift of the control parameter �. This subtlety was over-
looked by Chen and Dohm �10� in their work on FFS in the
Ising model, and their derivation of universal scaling func-
tions. Because there exists to date no two-loop calculation of
the shift of the critical control parameter, which would even-
tually lead to a universal correction proportional to
�L0 /L�d−4, we introduce here a wild card K for this universal
correction. The introduction of K produces

a = − �1 + K�L0/L�d−4 + O„�L0/L�2d−8
…��L0/L�d/2−2,

�5.11�

with L0 and K to be determined by fits to the numerical data.
Next, we revisit the ratio U. From the representations

�4.16� and �4.17b� of the functions �l in Eq. �5.7�, we obtain
in the limit b→0

U = U0�a� ª U�a,0� =
�F�a� − a���1 + a2� − aF�a��

�2 + a2�F�a� − a�3 + a2�
,

�5.12a�

where

F�a� = �2/� exp�− a2/2�erfc�a/�2�−1, �5.12b�

with a=�L0 /L�1+KL0 /L+O(�L0 /L�2)�. The ratio U is
shown for d=5 in Fig. 4. The solid dots stem from our
Monte Carlo simulations of critical sDP on bcc lattices of
linear size L=4 to L=32. The red upper curve is a fit to the
numerical data with L0=1.01 and K=2.17. As expected, the
nonuniversal length scale L0 is of the order of the lattice
spacing. Note that the numerical result for correction param-
eter K is positive whereas the pure one-loop calculation,
which entirely misses the O(�L0 /L�d−4) term in Eq. �5.10�,
pretends a negative value of −2.096. For the purpose of dem-
onstration, we include in Fig. 4 the curve of U0 pertaining to
this flawed value of K, green lower curve. Note that this
curve has a nonphysical maximum near L=6, which clearly
shows that a pure one-loop calculation is incomplete and
misleading and which underscores our previous reasoning
that two-loop contributions to the shift of the control param-
eter cannot be neglected for the interpretation of the numeri-

cal data. For further comparison, we also plot U0 using the
correct 1-loop result for the control parameter shift, i.e., with
K set to zero �blue middle curve�. The figure shows that the
corrections cannot be neglected below L�24 due to the slow
decrease of a��L0 /L with increasing L. The zero-mode
limit 1 /2 �brown straight line� approximates U reliably for
only very large values of L, which were out of reach for our
simulations.

VI. CROSSOVER TO MEAN FIELD BEHAVIOR

In this section, we consider the crossover to the mean
field behavior in the infinite volume limit w→� in spatial
dimensions d�4. If w is comparable with or greater than 1,
i.e., for r= ��−�c�+M� �2� /L�2, we can and do calculate the
order parameter M = ��=g�s�r , t� and its correlation �−1

= ���2= ��2− ��2=g2L−d�ddr�s�r , t�s�0 , t�cum in a stan-
dard one-loop perturbation expansion based on functional
integrals with weight exp�−J�, where J is the response func-
tional as given in Eq. �2.3�. The results for M and �−1 pro-
duced by this direct calculation are then compared with the
corresponding expressions calculated with the steady state
distribution function, �4.12�. This comparison reveals that
neither the lowest-mode approximation nor the one-loop cal-
culation using the Markovian approximation capture the cor-
rect crossover behavior as produced by the direct calculation.
Equation �6.9� nails down the difference in the outcome of
the direct calculation and the one that uses the Markovian
approximation.

For calculating M and �−1 without recourse to the dy-
namic free energy, we need to know both the propagator and
the correlator implied in J. Applying the shift s→s+M /g to
J, we readily obtain

G�q,t� = ��t�exp�− ��r + q2�t� , �6.1a�

C�q,t� =
M

2�r + q2�
G�q, �t�� , �6.1b�

as the propagator and correlator in time and momentum
space. Then, to one-loop order, the equation of state follows
as

H = �M +
1

2
M2 +

g2

2
L−d�

q
C�q,0� . �6.2�

To the same order we obtain for the correlation

Ld

g2�
−1 = C�0,0� + ��g�2L−d�

q
� �

−�

0

dtdt�

�	G�0,− t�G�0,− t���1

2
C�q,t − t��2

− 2C�q,t − t��G�q,t − t���
+ G�0,− t�C�0,− t���2C�q,t − t��

�G�q,t − t�� − G�q,t − t��2�
 . �6.3�
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FIG. 4. �Color online� The ratio U as a function of L. The
meaning of the various curves is explained in the text.
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After some calculation and after rescaling of the parameters
and fields as before, we get the equation of state

y = �x + z��1 +
1 − wD�1��w�

�x + z�2 � z

2
−

z2

4
, �6.4�

in terms of the scaling variables defined by Eqs. �4.1� and
�4.2�. The correlations in terms of these variables are given
by

2Ld

g2 �
−1 =

z

x + z
�1 −

2 − 4wD�1��w� + 3wD�1��3w/2�
�x + z�2

+ z
1 − w2D�2��w�

�x + z�3 � . �6.5�

If w�1, we have D�l��w��w−l up to exponentially small
corrections. Using these properties, we find that the equation
of state and the correlation approach their mean field forms
in the infinite volume limit with exponentially decreasing
deviations. In contrast to this exponential crossover, the
lowest-mode approximation, which corresponds to letting
wlD�l��w�→0, produces unphysical algebraic crossover to
mean field behavior with decreasing deviations proportional
to �x+z�−2.

Recall that we have calculated in Sec. IV with the help of
the steady state distribution a scaling form for the moments
of �, Eq. �4.18�. This equation implies scaling forms for the
equation of state and the correlations, which we in the fol-
lowing wish to compare to Eqs. �6.4� and �6.5�. For simplic-
ity, we focus on the following three regions of phase space:
the absorbing phase region x�1, the active phase region
−x�1, both with small source x2�4y, and the region with
large source including the bulk critical point 4y�x2. Ex-
panding Eqs. �6.4� and �6.5� for x�1, x2�4y, we obtain

Ld/2

g
M �

y

x
�1 −

y

x2 −
1 − wD�1��w�

x2 � , �6.6a�

Ld

g2�
−1 �

y

x2�1 −
3y

x2 −
3 − 5wD�1��w� + 3wD�1��3w/2�

x2 � .

�6.6b�

In the active region −x�1, x2�4y, we get

Ld/2

g
M � �x��1 +

y

x2 −
1 − wD�1��w�

x2 � , �6.7a�

Ld

g2�
−1 � 1 −

y

x2

+
1 + 3wD�1��w� − 3wD�1��3w/2� − 2w2D�2��w�

x2 .

�6.7b�

Finally, we find for 4y�x2

Ld/2

g
M � �y�1 −

x

2�y
−

1 − wD�1��w�
4y

� , �6.8a�

Ld

g2�
−1 �

1

2
−

x

4�y

−
1 − 4wD�1��w� + 3wD�1��3w/2� + w2D�2��w�

8y
.

�6.8b�

Next, let us see what our steady state distribution, Eq. �4.12�,
tells us, and let us compare that to the above. Using the
asymptotic properties of the parabolic cylinder functions �36�
in the three regions, we obtain for M the same expressions as
displayed in Eqs. �6.6a�, �6.7a�, and �6.8a�. For the correla-
tions, we recover Eqs. �6.6b�, �6.7b�, and �6.8b� up to one
alteration: the function D�1��3w /2� is replaced by

D�1��3w/2� → D�1��w� −
w

2
D�2��w� , �6.9�

which is an identity to linear order in w but which modifies
the correlations at higher orders. The mean-field parts of the
expressions for �−1, given by the respective first two terms
on the right-hand sides of Eqs. �6.6b�, �6.7b�, and �6.8b�, are
identical in both approaches. For w�1, where we have
D�l��w��w−l up to exponentially small corrections,
�6.6�–�6.8� tend to the mean-field behavior with exponen-
tially decaying corrections. After the replacement �6.9� �i.e.,
in the approach based on the steady state distribution�, how-
ever, these corrections for the correlation �−1 fall off only
algebraically. This incorrect feature is a consequence of the
Markovian approximation as the direct calculation shows.

VII. FINITE SIZE EFFECTS BELOW dc

As mentioned above, in a former publication �17�, one of
us and co-workers calculated finite size effects for absorbing
nonequilibrium processes belonging the DP universality
class in spatial dimensions d=4−�
4. There, systems with-
out a source were considered, and the consequences of the
finite size scaling for the relaxation behavior were scruti-
nized. Here, we are interested in the steady state properties in
the presence of the source h. We calculate various quantities
in an � expansion, most notably the parameters a and b and
the ratio U. Equation �7.17� gives our �-expansion results for
a and b, and Eq. �7.18� states our �-expansion result for U.

A one-loop calculation for d
4 can be done in much the
same way as the calculation for d�4 presented in Sec. III.
Now, however, in addition to the functions D�l��w� in Eqs.
�3.14�, the brackets in Eqs. �3.13� become IR divergent, and
therefore, they can no longer be simply included in nonuni-
versal amplitudes. Rather, these additional divergencies must
be handled with a renormalization procedure and the renor-
malization group equation. For general background on these
methods, we refer to the usual textbooks, e.g., Refs. �8,41�;
for applications of these techniques to the DP universality
class consult, e.g., Refs. �16,23,24�.

Whereas the coupling constant g is dangerously irrelevant
in d�4, it is, respectively, marginal and relevant in d=4 and
d
4. Therefore, it is useful for the case d
4 presented in
this section and the case d=4 to be presented in Sec. VIII to
recast the dynamic free energy �3.5� as
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��S̃,S� = �Ld� dt	S̃��−1k̂�t + �̂ +
ĝ

2
�S − S̃��S − hS̃
 ,

�7.1�

with S�t�=L−d�ddrs�r , t� and likewise for s̃. To facilitate the
renormalization procedure and to cleanly keep track of bare
�unrenormalized� and renormalized quantities, we henceforth
label bare fields and parameters with a ring, i.e., we let s

→ s̊, s̃→ s̊̃, �→ �̊, and so on, and we reserve symbols without
a ring for their renormalized counterparts. The bare and the
renormalized quantities are related via the renormalization
scheme

s̊ = Z1/2s, s̊̃ = Z1/2s̃, h̊ = Z�
−1Z1/2h , �7.2a�

�̊ = Z�Z
−1�, g̊2 = Z�

−2Z−1Zug2, �7.2b�

�̊ = Z�
−1Z�� + �̊c. �7.2c�

The renormalization factors Z, Z� and so on are determined
as to eliminate the � poles arising in a dimensional regular-
ized calculation of the momentum space integrals. This kind
of calculation orders naturally in powers of a dimensionless
coupling constant u defined by u=G� 

−�g2, where  −1 is a
convenient length scale, and G�=��1+� /2� / �4��d/2. The
renormalization factors are given to one-loop by

Z = 1 +
u

4�
, Z� = 1 +

u

8�
, �7.3a�

Z� = 1 +
u

2�
, Zu = 1 +

2u

�
. �7.3b�

With help of the renormalization scheme �7.2� and the renor-
malization factors �7.3�, we find that the renormalized ver-
sions of the parameter functions featured in the dynamic free
energy �7.1� are given by

k̂ = �1 −
u

4
ln� L

2�
� +

u

8
!��w�� , �7.4a�

�̂ = �1 −
u

2
ln� L

2�
� +

u

4
!��w��� +

u

4
�!�w� − w!��w���2�

L
�2

,

�7.4b�

ĝ = �1 − u ln� L

2�
� +

u

2
!��w��g . �7.4c�

Here we have defined the function

!�w� = w�ln w − 1� −
1

�2D�1��w� , �7.5�

where it is understood that D�1��w� is taken at d=4 and where
!��w� stands, as usual, for the derivative of !�w�. The virtue
of the function !�w� is that it and its derivative lack the
nonanalytic behavior of D�l��w� for w→0. However, as
shown in the appendix, these functions are nevertheless loga-

rithmically divergent in the bulk limit w→�. In principle,
one should handle these divergences by subtracting a term
w ln�1+w� or ln�1+w�, respectively, as done in Ref. �17�.
These subtractions, with w as given by Eq. �3.11�, combine
with the logarithm in the first brackets of Eqs. �7.4� to pro-
duce the IR-divergent term ln��2� / L�2+ ��+M� / 2�,
which should be eliminated by the renormalization flow.
Nonetheless, we can here set these subtleties aside and ig-
nore the divergences for w→� because we are only inter-
ested in the strong finite size case w	1.

The perturbation results for the parameter functions �7.4�,
cannot be used directly as they stand. These results must be
transported by the renormalization group flow to a noncriti-
cal region. To this end, we derive in a standard fashion Gell-
Mann-Low renormalization group equations �RGEs� for the
parameter functions via exploiting the fact that the bare
theory must be independent of the length scale  −1 intro-
duced by renormalization,

D ln k̂ = " , �7.6a�

D ln �̂ = " −  , �7.6b�

D ln ĝ =
1

2
�3" − 2� , �7.6c�

where D stands for the renormalization group differential
operator

D =  � + ��u + ��� + �#�� +
M

2
�� −

�

u
− "��M

�7.7�

and, where ", , and so on are the usual RG functions. For
DP, these RG functions are known to two-loop order �23,24�:

" = −
u

4
+ �2 − 3 ln

4

3
�3u2

32
, �7.8a�

 = −
u

8
+ �17 − 2 ln

4

3
� u2

256
, �7.8b�

# =
3u

8
− �7 + 10 ln

4

3
� 7u2

256
, �7.8c�

� = − �u +
3u2

2
− �169 + 106 ln

4

3
� u3

128
. �7.8d�

where we have included the two-loop contributions, even
though we work in this section only to one-loop order, be-
cause we will need them in Sec. VIII. The RGEs can be
solved using the method of characteristics. The idea behind
this method is to consider all the scaling parameters as a
function of a single flow parameter l. One sets up character-
istic equations that describe how the scaling parameters
transform under a change of l. The characteristic for the in-
verse length scale  is trivial and has the solution  ̄�l�= l,
i.e., a change of l corresponds to a change of the external
inverse length scale. With help of the solution to the remain-
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ing characteristics and also with help of a dimensional analy-
sis to account for naive dimensions, we obtain

k̂��,M,u, ,L� = X�l�−1k̂� �̄�l�
� l�2 ,

M̄�l�
� l�2 , ū�l�,1, lL� ,

�7.9a�

�̂��,M,u, ,L� = � l�2X�l�−1X��l�

� �̂� �̄�l�
� l�2 ,

M̄�l�
� l�2 , ū�l�,1, lL� ,

�7.9b�

ĝ��,M,u, ,L� = � l��/2X�l�−3/2X��l�

� ĝ� �̄�l�
� l�2 ,

M̄�l�
� l�2 , ū�l�,1, lL� ,

�7.9c�

where

�̄�l� = �X��l� , �7.10a�

M̄�l� = Ml�/2�ū�l�/u�1/2X�l�−1/2. �7.10b�

At this stage, the scaling relations �7.9� are still rather formal
because we still must determine X�l�, X��l�, X��l�, and ū�l�
by solving their respective characteristic. The characteristic
for the dimensionless coupling constant u is given by

l
d$

dl
= ��$� , �7.11�

where we abbreviated $= ū�l�. The remaining characteristics
are all of the same structure

l
d ln Q�$�

dl
= q�$� . �7.12�

Here, Q is a placeholder for X, X�, and X�, respectively, and
q is a placeholder for ", #, and , respectively. As usual,
solving the characteristics leads to qualitatively different re-
sults depending on whether we consider the upper critical
dimension or dimensions below it. We will return to d=4 in
Sec. VIII.

For d
4, the dimensionless coupling constant u flows to
the stable fixed point u*=2� /3+O��2� and, consequently,
X�l�, etc., display power law behavior described by the well
known critical exponents of the DP universality class. Using

a compact notation where p̂ stands ambiguously for k̂, �̂, and
ĝ, we can write the resulting scaling form for the parameter
functions as

p̂��,M,L� = l�p̂p̂�l−1/��,l−�/�M,lL� , �7.13�

with �k̂=−%=d−2� /�, ��̂=z−%=" /�, and �ĝ= �2z−d
−3%� /2= �"−�� /�, respectively. Here, the three independent
critical exponents are given by

� = 1 −
�

6
, " = 1 +

�

6
, � =

1

2
+
�

16
, �7.14�

up to terms of order �2 �23,24�. The exponents � and " must
not be confused with the RG functions discussed above.
Now, we choose the flow parameter l=2� / L	1 to elimi-
nate the IR-diverging logarithm ln� L /2��. The parameter l
must be small to reach the asymptotic region, i.e., to produce
universal behavior. Of course, this is a condition on the size
L, which must not be small in comparison to a non-universal
length scale L0 which is set in our simulations by the lattice
constant. After implementing our choice of l, we obtain the
basic parameter functions in scaling form

k̂ = � L/2��2�/�−d�1 +
�

12
!��w�� , �7.15a�

�̂ = � L/2��−"/�	�1 +
�

6
!��w���� L/2��1/�

+
�

6
�!�w� − w!��w�� 2
 , �7.15b�

ĝ = � L/2����−"�/��1 +
�

3
!��w��g , �7.15c�

where now

w = ��� L/2��1/� + M� L/2���/��/ 2. �7.16�

Next, let us return to the parameters a and b of the
dynamic free energy �4.5� and the steady state distribution
�4.12�. Because we are interested in the strong finite size
case w	1, we can approximate !�w��!�0�+w!��0� and
!��w��!��0�, where !�0�=−8 ln 2/�2�−0.56184 and
!��0�=−1−CE−2 ln 2/3−6��2� /�2�−1.85789 with CE

and  denoting Euler’s constant and Riemann’s  function,
respectively. Recalling the definitions of a and b, Eqs. �4.6�,
we find after some algebra their � expansions to be given by

a = ��6/��1 − A� + O��2����/ 2�� L/2��1/�

−
8 ln 2

�
��/6�1 + O���� , �7.17a�

b = �3�2/���1 − 2A� + O��2���H/ 4�� L/2���/�,

�7.17b�

where A= �ln �� /4− �ln 2� /12+ �CE−1� /8−3��2� / �2��2

�0.24688 and �=�+". Now, we are finally in the position
to address our main observable, the momenta ratio U0�a�
=U�a ,b→0�. Expanding Eq. �5.12� with a as given in Eq.
�7.17� in � we find that

U0 =
1

2
+� �

3�
� 4

�
− 1�ln 2 +

2�

�
�1 −

4

3�
−

16

3�2��ln 2�2

+ O��3/2� �7.18�

at the bulk critical point �=0. Setting �=1, 2, and 3 in Eq.
�7.18� we obtain estimates of U0 for systems belonging to the
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DP universality class in spatial dimensions 3, 2, and 1, re-
spectively:

U0 = �0.573 for d = 3

0.609 for d = 2

0.639 for d = 1.
� �7.19�

These results are to be compared with our numerical data for
d below dc=4. For d
4, we simulated in addition to the CP
and sDP also the pair contact process �PCP� introduced by
Jensen �see Ref. �42� as well as the reviews �13,15��. The
corresponding numerical curves for U are shown in Fig. 5.
From these curves we find U�d=3�=0.61, U�d=2�=0.704,
and U�d=1�=0.833. Our one-loop calculation reproduces
qualitatively correct the right trend of U as a function of d.
Not surprisingly, the quantitative agreement is rather poor for
low dimensions. At least for d=3, the �-expansion estimate
is not too far away from the numerical value. For a field
theoretic one-loop calculation of amplitude ratios, errors of
about 10% are typical for �=1 �7,8�, and the deviation of our
analytical and numerical results for �=1 is consistent with
that. It is important to note that the value of U�d� for a given
dimension is quantitatively the same for the three processes,
and that, therefore, U�d� proves to be a true universal signa-
ture of the DP class. Moreover, the universality of U�d� for
the three processes shows that PCP definitely belongs to the
DP universality class.

VIII. FINITE SIZE EFFECTS AT dc

Here, we study finite size effects right at dc, where the
finite system size is expected to generate logarithmic correc-
tions to the bulk behavior. Guided by lessons learned form
previous studies of logarithmic corrections �29,40,43,44�, we
choose to derive scaling forms in a parametric representation
rather than in the more traditional representation featuring
nested logarithms. Central to the parametric representation is

the parametrization �8.4� of the system size L. Equation �8.8�
gives our general parametric results for a and b, and Eq.
�8.10� specializes the result for a to the critical point. Finally,
we compare our parametric result for U to our simulation
results.

Past studies of logarithmic corrections in DP �29,40� and
other systems, e.g., linear polymers �43,44�, led to the obser-
vation that one has to push the analytic calculations beyond
the leading logarithmic correction to obtain good agreement
between theory and simulations. To go beyond the leading
logarithmic correction, we will work in the following, as
announced above, to two-loop order as far as the RGEs are
concerned. Concerning the scaling functions, it will still be
sufficient, for the most part, to work to one-loop order. How-
ever, here is an important exception: a one-loop calculation
of the scaling function of a does not suffice to determine the
next to leading logarithmic correction to a entirely. This
subtlety will be discussed as we move along.

Our vantage point for this section will be the general scal-

ing forms for the parameter functions k̂, �̂, and ĝ derived in
Sec. VII, Eqs. �7.9� in conjunction with Eqs. �7.10�. To fill
these general scaling forms with live for d=4, we must solve
the characteristics for this dimension. In order to make our
notation as compact as possible, we will write in the follow-
ing the RG functions as f�u�= f0+ f1u+ f2u2+¯ with f stand-
ing ambiguously for ", , #, and �. The meaning of the
coefficients f0, f1 and should be evident.

First, we solve the characteristics for d=4. The solution to
the characteristic for the dimensionless coupling constant u,
differential equation �7.11�, is given by

l = l�$� = l0$
−�3/�2

2
exp�− ��2$�−1 + O�$�� , �8.1�

with l0 being an integration constant. The characteristic
�7.12� is readily solved with the result

Q�$� = Q0$
q1/�2 exp� �q2�2 − q1�3�

�2
2 $ + O�$2�� , �8.2�

with a nonuniversal integration constant Q0.
Next, we choose the flow parameter l such that the lattice

size L effectively acquires a finite value in the scaling limit

l
 L

2�
= 1. �8.3�

With this choice, l and $ tend to zero for  L→�, and L and
$ are related via

�L/L0� = $�3/�2
2

exp���2$�−1 + O�$�� , �8.4�

where L0=2� / � l0�. Note from this relation that, in contrast
to the one-loop approximation of the RG functions ��3

→0�, the two-loop approximation leads to an effective L
dependence of the nonuniversal length L0 which must not be
neglected �see also our discussion of Fig. 6 below�. Taken
together, Eqs. �8.2� and �8.4� can be exploited as a paramet-
ric representation of the tuple �L ,Q� with $ as parameter.
This representation has the advantage that the resulting for-
mulas are comparatively compact and, more importantly, that
one deals with clean expansion in powers of $.

10
−4

10
−2

10
0

10
2

10
4

10
6

ah h (aL L)
σ/ν

0.4

0.5

0.6

0.7

0.8

0.9
U

CP
PCP
sDP

D=1

D=2

D=3

d = 1

d = 3

d = 2

Ahh(ALL)∆/ν

U

FIG. 5. The universal ratio U at the bulk critical point as a
function of the scaled source h /L�/� in dimensions d=1,2 ,3.
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After this prelude, let us return to the parameter functions.
Collecting from the renormalized perturbation calculation re-
sults �7.4�, the general scaling forms �7.9�, the solutions of
the characteristics �8.2�, and implementing our choice �8.3�
of the flow parameter, we obtain

k̂ = �$−1 −
3

4
!��w��−1/6

exp�ck̂$ + O�$2�� , �8.5a�

�̂ = ��$−1 −
3

4
!��w��−1/3

exp�c�̂
�1�$ + O�$2��

+
1

4
�2�

L
�2

$13/12�!�w� − w!��w��exp�c�̂
�2�$ + O�$2�� ,

�8.5b�

ĝ = 4��$−1 −
3

4
!��w��−2/3

exp�cĝ$ + O�$2�� , �8.5c�

where now

w = �� L

2�
�2

$1/4 exp�ca$ + O�$2��

+ m
L2

�
$13/12 exp� ck̂

2
$ + O�$2�� �8.6�

and where we have included nonuniversal integration con-
stants stemming from characteristics solutions �8.2�, viz., X0,
X�,0, and X�,0, in the nonuniversal amplitudes of �, h, and m.
The coefficients appearing in the exponentials in Eqs. �8.5�
and �8.6� are given by

ck̂ =
�3"1 − �2"2

�2
2 =

25

1152
+

161

576
ln�4

3
� � 0.10211,

�8.7a�

c�̂
�1� =

�2�2 + #2 − "2� − �3�1 + #1 − "1�
�2

2 =
49

576
+

53

288
ln�4

3
�

� 0.13801, �8.7b�

c�̂
�2� =

�2�2 − "2� − �3�1 − "1�
�2

2 = −
17

2304
+

263

1152
ln�4

3
�

� 0.05830, �8.7c�

cĝ =
�2�22 − 3"2� − �3�21 − 3"1�

2�2
2 =

1

288
+

53

144
ln�4

3
�

� 0.10936, �8.7d�

ca =
�2#2 − �3#1

�2
2 =

71

768
−

17

384
ln�4

3
� � 0.07971.

�8.7e�

Now, we revisit a and b. Inserting our results �8.5� into
definitions �4.6� we find

a = �
L2

2�
�$−1 −

3

4
!��w��1/4

exp�ca$ + O�$2��

+
�

2
�$−1 + F�w��−1/2�!�w� − w!��w��exp�O�$2�� ,

�8.8a�

b = h
L4

2�
�$−1 −

3

4
!��w��1/2

exp�cb$ + O�$2�� , �8.8b�

where

cb =
�2�"2 − 22� − �3�"1 − 21�

2�2
2 =

7

384
−

17

192
ln�4

3
�

� − 0.00724. �8.9�

At this point, a comment is in order. A full-fledged two-loop
calculation of a’s universal scaling function is expected to
produce, inter alia, terms of the same order in $ as the one-
loop calculation. Therefore, we have replaced in second line
of Eq. �8.8a� the one-loop contribution $1/2 by the bracket
containing F�w�, where F�w� is a hitherto unknown function.
We will leave the calculation of F�w�, which will be chal-
lenging, to future work.

Finally, let us return to our ratio U of the order parameter
moments. As was the case for d
4, we are mainly interested
in the strong finite size regime w	1 and, therefore, we ap-
proximate !�w��!�0�+w!��0� and !��w��!��0�. Focus-
sing on criticality, we set �=0. The remains of a, Eq. �8.8a�,
are then

a = −
4 ln 2

�
�$−1 + K�−1/2 �8.10�

with a universal correction K=F�0�. As discussed above, a
calculation of K would require to determine the scaling func-
tion of a to two-loop order. Because corresponding results
are currently not at our disposal, we use K as a fitting pa-

10 20 30 40 50 60
L

0.56

0.58

0.6

0.62

U

FIG. 6. �Color online� The universal ratio U versus system size
L for d=4. The blue lower and the red middle curves represent our
analytical results �5.12� and �8.10� with L0=2.4, K=0 and L0=1.5,
K=−0.5, respectively. For comparison, we included the dashed up-
per curve, where we have disregarded any two-loop contributions
and where we have fitted L0 to the data points for larger L, L0

=5.6. The solid dots stem from our Monte-Carlo simulations of
critical sDP on bcc lattices of linear sizes ranging from L=4 to L
=64.
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rameter. Note that a falls off only as a��ln�L /L0��−1/2 in d
=4 compared to the a��L /L0�−1/2 behavior in d=5. Thus, it
must be expected that U approaches its zero-mode limit 1 /2
even slower for increasing system size than in d=5, and that
one needs at dc even larger systems than above dc for the
zero-mode theory to provide a good approximation.

Substituting Eq. �8.10� without a further expansion into
our scaling function U0�a�, Eq. �5.12�, we obtain our final
result for U0 as a function of $. We then use the so-obtained
expression for U in conjunction with Eq. �8.4� as a paramet-
ric representation of the tuple �L ,U� with $ as parameter,
which we plot together with our numerical data in Fig. 6. In
the plot, we use K and L0 as fitting parameters. Our best-fit
analytical curve �the red middle curve� impressively tracks
our data points over the entire range of simulated lattice sizes
including sizes as small as L=4. As mentioned earlier, the
two-loop RG contribution to Eq. �8.4� effectively modifies
L0. Due to this modification the slope of the continuous
curves is significantly reduced for L
40 in comparison to
the dashed pure one-loop curve. The introduction of K leads
mainly to a rescaling of the nonuniversal length L0 which
manifests itself in the modest deviation of the red middle
curve from the blue lower curve for L
10. Note that up to
two-loop order, one can eliminate K entirely from U via a
simple rescaling of L0. Thus, one may view the introduction
of a nonzero K as a crude way of accounting for the influ-
ence of high loop orders. Note also, that the effect of the
nonzero, fitted K is much smaller than the effective modifi-
cation of L0 resulting from the two-loop RG contribution to
Eq. �8.4�. Over all, the agreement between theory and simu-
lation is remarkable. This observation reassures us once
more about the validity of our analytical and numerical ap-
proaches. Moreover, it underscores the advantages of the
parametric representation and makes tangible the necessity
of including two-loop RG results.

IX. CONCLUDING REMARKS

In summary, we have investigated finite size scaling ef-
fects in steady state systems belonging to the directed perco-
lation universality class. We have assumed a hypercubic ge-
ometry with length L, periodic boundary conditions and the
presence of an external homogeneous time independent
source which prevents the systems to fall into their absorbing
inactive state. We applied a field-theoretic technique based
on an effective response functional �dynamic free energy� for
the lowest �homogeneous� mode, which allowed us to calcu-
late finite size effects within a one-loop perturbation expan-
sion of the higher modes combined with a Markovian ap-
proximation. This latter approximation is indispensable for
calculations of strict nonequilibrium properties of systems
without detailed balance. In particular, it allowed us to cal-
culate the steady state distribution for the lowest mode via
the associated Fokker-Planck equation. Using this distribu-
tion, we calculated explicit scaling forms for the moments of
the homogeneous order parameter. Moreover, we introduced
and calculated a ratio U of order parameter moments which
allowed us to analyze universal finite size effects right at the
critical point. Complementary to our analytical work, we per-

formed Monte Carlo simulations based on the contact pro-
cess, the site directed percolation process and, on occasion,
the pair contact process.

Above and at the upper critical dimension 4, we found
remarkable agreement between our analytical and numerical
approaches. In these dimensions, the usual coupling constant
of the cubic term in the response functional is dangerously
irrelevant. Due to this dangerous irrelevance, the universal
scaling functions depend on the additional �compared to d

4� scaling variable L /L0, where L0 is a nonuniversal length
scale. Our results demonstrate that it is necessary to push the
diagrammatic calculations beyond one-loop order to obtain
agreement between theory and simulations down to very
small systems sizes, L /L0�1.

For d below 4, we calculated the universal critical values
of U in a � expansion to order O��3/2�. The accuracy of this
calculation corresponds to that of the calculation of the
Binder cumulant of the &4 model at the bulk critical point by
Brezin and Zinn-Justin �7�. The agreement between our
theory and simulations is within the expectation for a one-
loop calculation that captures terms to O��3/2�, and, of
course, it decreases for decreasing dimensions. However, the
universal critical values of U produced by our simulations
were identical for all three processes that we simulated and,
therefore, U proved to be a true signature of the DP univer-
sality class. Moreover, this finding demonstrates that the pair
contact process belongs to this class.

On the analytical side, our study is the first investigation,
with the exception of the former work of one of us and
co-workers, which addresses finite size scaling near absorb-
ing phase transitions. We believe that our approach may be
applied to many other nonequilibrium phenomena, and that it
can help to improve the understanding of finite-size effects in
nonequilibrium systems significantly.

APPENDIX: PROPERTIES OF THE FUNCTIONS D„l…
„w…

AND �„w…

Using an exponential representation of the denominators
in the sums �3.7�, �r+q2�−l=��l�−1�0

�dttl−1 exp�−�r+q2�t�,
we eventually obtain for the functions D�l��w� the Laplace-
transforms stated in Eq. �3.12�. D�1��w� and D�2��w� are
smooth functions if d�4 �with D�1��0�=4.229 and D�2��0�
=21.421 for d=5�. Due to the recursion relation D�l+1��w�
=�D�l��w� /�w, we can restrict our attention here to D�1��w� in
order to determine the remaining properties of D�l��w� that
are used in the main text.

To extract the behavior of D�1��w� at small arguments, we
divide it into parts

D�1��w� = I1�w� + I2�w� �A1�

with

I1�w� = �
0

�

dte−wt��
t
�d/2�1 − �

l=0

k
tl

l!
e−t�

= �d/2���1 − d/2�wd/2−1

− �
l=0

k
��l + 1 − d/2�

l!
�1 + w�d/2−l−1� , �A2�
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where k is some integer with k�d /2−1 to provide integra-
bility at t=0. The specifics of the remaining part I2�w� can
easily be gathered from Eqs. �3.12� and �A2�. Then, it is
straightforward to see I2�w� is an analytic function of w.
Hence, we obtain for small w=0 that

D�1��w� = D̄�1��w� + �d/2wd/2−1

� ���1 − d/2�
�− 1�d/2

��d/2�
ln w if d/2 � Z , � �A3�

where D̄�1��w� is analytic.
To extract the behavior of D�1��w� for large arguments, we

divide this function in three parts

D�1��w� = J1�w� + J2�w� + J3�w� . �A4�

The behavior of J1�w� and J2�w� for w�1 is given by

J1�w� = �
�

�

dte−wt���
t
�d/2

− A�t�d + 1� = O�e−�w� ,

�A5�

J2�w� = �
0

�

dte−wt =
1

w
+ O�e−�w� . �A6�

Using the expansion A�t�d−1=4d exp�−t�+O(exp�−2t�), we
find

J3�w� = �
0

�

dte−wt���
t
�d/2

− A�t�d�
= �

�

�

dse−�2w/s� s

�
�d/2−2

�1 − A�s�d�

� − 4d�
�

�

ds� s

�
�d/2−2

exp�− s − �2w/s�

� − 8�dwd/4−1/2Kd/2�2��w� , �A7�

where K��z� is the Basset function, for the leading behavior
of J3�w�. Using the asymptotic properties of this function, we
finally get

D�1��w� =
1

w
− 4�dw�d−3�/4 exp�− 2��w� + ¯ , �A8�

where the ellipsis denote subleading terms.
For d�4, we use instead of D�1��w� the function

!�w� = w�ln w − 1� −
1

�2D�1��w� , �A9�

where D�1��w� is taken at d=4, and its first derivative !��w�
to eliminate the nonanalytic logarithmic behavior near w=0.
This function has a power expansion in w as derived in Ref.
�17�:

!�w� = �
k=0

�

!k�− w�k, �A10�

where

!0 = −
8 ln 2

�2 , �A11a�

!1 = CE + 1 +
2 ln 2

3
+

6��2�
�2 , �A11b�

and for k�2

!k =
8�1 − 1/4k�

�2 �k��k + 1� , �A11c�

with CE�0.577716 and ��2��−0.937548. For w→�, the
function !�w� behaves as

!�w� � w�ln w − 1� −
1

�2w
+

16

�
w1/4 exp�− 2��w� + ¯ ,

�A12�

up to subleading terms.

�1� M. N. Barber, in Finite-size Scaling in Phase Transitions and
Critical Phenomena, edited by C. Domb and J. L. Lebowitz
�Academic, New York, 1984�, Vol. 8.

�2� J. L. Cardy, in Finite-size Scaling, edited by J. L. Cardy
�North-Holland, Amsterdam, 1988�.

�3� M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516
�1972�.

�4� J. G. Brankov, D. M. Danchev, and N. S. Tonchev, Series in
Mordern Condensed Matter Physics �World Scientific, Sin-
gapore, 2000�, Vol. 9.

�5� M. E. Fisher, in Renormalization Group in Critical Phenom-
ena and Quantum Field Theory, edited by D. J. Gunton and M.
S. Green �Temple University, Philadelphia, 1974�.

�6� E. Brézin, J. Phys. �France� 43, 15 �1982�.

�7� E. Brézin and J. Zinn-Justin, Nucl. Phys. B 257, 867 �1985�.
�8� J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

�Clarendon, Oxford, 1996�.
�9� E. Luijten and H. W. J. Blöte, Phys. Rev. Lett. 76, 1557

�1996�; H. W. J. Blöte and E. Luijten, Europhys. Lett. 38, 565
�1997�; E. Luijten, K. Binder, and H. W. J. Blöte, Eur. Phys. J.
B 9, 289 �1999�.

�10� X. S. Chen and V. Dohm, Eur. Phys. J. B 5, 529 �1998�; Phys.
Rev. E 63, 016113 �2000�.

�11� D. Stauffer, Braz. J. Phys. 30, 787 �2000�.
�12� Here, nonuniversal amplitudes are included in redefinitions of

L and r. The inequalities of Eq. �1.1� reduce for d
dc to 1
�L1/�r�g*

2 where g*
2��+O��2� denotes the fixed point value

of the coupling constant in the �=dc−d expansion.

FINITE-SIZE SCALING OF DIRECTED PERCOLATION … PHYSICAL REVIEW E 76, 041126 �2007�

041126-17



�13� H. Hinrichsen, Adv. Phys. 49, 815 �2000�.
�14� G. Ódor, Rev. Mod. Phys. 76, 663 �2004�.
�15� S. Lübeck, Int. J. Mod. Phys. B 18, 3977 �2004�.
�16� H. K. Janssen and U. C. Täuber, Ann. Phys. �N.Y.� 315, 147

�2005�.
�17� H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B:

Condens. Matter 71, 377 �1988�; J. Phys. A 21, L427 �1988�.
�18� S. Lübeck and H. K. Janssen, Phys. Rev. E 72, 016119 �2005�.
�19� V. N. Gribov, Sov. Phys. JETP 26, 414 �1968�.
�20� P. Grassberger and K. Sundermeyer, Phys. Lett. 77B, 220

�1978�; P. Grassberger and A. de la Torre, Ann. Phys. �N.Y.�
122, 373 �1979�.

�21� S. P. Obukhov, Physica A 101, 145 �1980�.
�22� J. L. Cardy and R. L. Sugar, J. Phys. A 13, L423 �1980�.
�23� H. K. Janssen, Z. Phys. B: Condens. Matter 42, 151 �1981�.
�24� H. K. Janssen, J. Stat. Phys. 103, 801 �2001�.
�25� S. Lübeck and R. D. Willmann, J. Phys. A 35, 10205 �2002�.
�26� A priori, g and g� �which, of course must be positive� are not

the same. However, one can identify g=g� after a straightfor-
ward rescaling of s, h, and .

�27� H. K. Janssen, J. Phys.: Condens. Matter 17, S1973 �2005�.
�28� H. K. Janssen, Ü. Kutbay, and K. Oerding, J. Phys. A 32, 1809

�1999�.
�29� H. K. Janssen and O. Stenull, Phys. Rev. E 69, 016125 �2004�.
�30� H. K. Janssen, Z. Phys. B 23, 377 �1976�; R. Bausch, H. K.

Janssen, and H. Wagner, ibid. 24, 113 �1976�; H. K. Janssen,
in Dynamical Critical Phenomena and Related Topics, edited

by C. P. Enz, Lecture Notes in Physics Vol. 104 �Springer,
Heidelberg, 1979�; H. K. Janssen, in From Phase Transitions
to Chaos, edited by G. Györgyi, I. Kondor, and T. Tél �World
Scientific, Singapore, 1992�.

�31� C. De Dominicis, J. Phys. Colloq. 37, C247 �1976�; C. De
Dominicis and L. Peliti, Phys. Rev. B 18, 353 �1978�.

�32� U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A
38, R79 �2005�.

�33� M. Ciafaloni and E. Onofri, Nucl. Phys. B 151, 118 �1979�.
�34� W. Feller, Ann. Math. 55, 468 �1952�; Commun. Pure Appl.

Math. 8, 203 �1955�; An Introduction to Probability Theory
and its Applications, 2nd ed. �Wiley, New York, 1957�.

�35� A. T. Bharucha-Reid, Elements of the Theory of Markov Pro-
cesses and their Application �McGraw-Hill, New York, 1960�.

�36� M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, 5th ed. �Dover, New York, 1968�.

�37� S. Lübeck and P. C. Heger, Phys. Rev. E 68, 056102 �2003�.
�38� E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 311 �1984�.
�39� S. Lübeck and R. D. Willmann, J. Stat. Phys. 115, 1231

�2004�.
�40� P. Grassberger �private communication�.
�41� D. J. Amit, Field Theory, the Renormalization Group, and

Critical Phenomena �World Scientific, Singapore, 1984�.
�42� I. Jensen, Phys. Rev. Lett. 70, 1465 �1993�.
�43� P. Grassberger, R. Hegger, and L. Schäfer, J. Phys. A 27, 7265

�1994�.
�44� J. Hager and L. Schäfer, Phys. Rev. E 60, 2071 �1999�.

JANSSEN, LÜBECK, AND STENULL PHYSICAL REVIEW E 76, 041126 �2007�

041126-18


